Investigadores de la Universidad de Nueva York han desarrollado un algoritmo que captura nuestra capacidad de aprendizaje y permite a la computadora reconocer y extraer conceptos visuales sencillos de la forma en la que lo hacen las personas.
«La investigación acorta el proceso computacional de aprendizaje de nuevos conceptos y amplía la aplicación de las máquinas a tareas más creativas”, dijo Brenden Lake, responsable de la investigación.
Para aprender un nuevo concepto los humanos solo necesitan unos pocos ejemplos para entender su funcionamiento y reconocer nuevos casos. En cambio, las computadoras actuales necesitan cientos o miles de instrucciones para operar con una precisión similar.
Para aproximarse a la manera humana de aprender, los investigadores desarrollaron un programa bayesiano de aprendizaje (BLP), en el que los conceptos se representan como programas informáticos sencillos.
Por ejemplo, la letra ‘A’ está representada por un código que genera ejemplos de esa letra cuando se ejecuta. Sin embargo, no se requiere un programador durante el proceso de aprendizaje, ya que el algoritmo se programa a sí mismo construyendo código para producir la letra que ve.
También, a diferencia de los programas estándar que producen el mismo resultado cada vez que se ejecutan, estos programas probabilísticos producen diferentes salidas en cada ejecución. Esto les permite captar cómo varían las manifestaciones de un mismo concepto, por ejemplo, las diferentes maneras en que dos personas dibujan la letra ‘A’.
El modelo también ‘aprende a aprender’. Por ejemplo, utiliza el conocimiento del alfabeto latino para aprender las letras del alfabeto griego. Los autores aplicaron su modelo a más de 1.600 tipos de caracteres escritos a mano en 50 de los sistemas de escritura del mundo, e incluso incluyeron letras de alfabetos inventados como los de la serie de televisión Futurama.
Además de probar la capacidad del algoritmo para reconocer nuevos ejemplos de un concepto, los investigadores pidieron tanto a los voluntarios como a los ordenadores que reprodujeran una serie de caracteres escritos a mano después de haber mostrado un solo ejemplo de cada uno, o en algunos casos, para crear nuevos símbolos.
Después, los científicos compararon los resultados de los participantes y las máquinas mediante test visuales de Turing. A los evaluadores humanos se les suministraron pares de ejemplos tanto de los participantes como de máquinas, junto con el símbolo original, y se les pidió identificar cuál de los símbolos había sido producido por el ordenador.
Los resultados mostraron que menos del 25% de los evaluadores tuvieron un desempeño significativamente mejor que el azar para determinar si un determinado conjunto de símbolos había sido producido por un humano o una máquina.
Los científicos refieren que aun se esta lejos de crear maquinas inteligentes, sin embargo el lograr que una maquina sea capaz de aprender y usar un gran número de conceptos del mundo real, incluidos conceptos visuales simples como caracteres escritos a mano es un significativo primer paso.